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ABSTRACT
This paper introduces a model for describing

outliers (observations which are extreme in some sense or violate the
apparent pattern of other observations) in linear regression which
can be viewed as a mixture of a quadratic and a linear regression.
The maximum likelihood estimators of the parameters in the model are
derived and their asymptotic properties discussed. Small sample
behavior of the model and robustness to inaccurate specification of
the mixing parameter were investigated using Monte Carlo techniques.
The asymptotic properties provide reason ble indications of behavior
for n as small as 21 and the procedure appears quite robust to the
inaccurate specification of the mixing parameter. Building models to
describe outliers and estimating their Parameters provides an
interesting alternative to procedures of outlier detection followed
by ordinary least squares proc,Aures. (Author)
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Introductory Statement

The central mission of the Stanford Center for Research and Develop-
ment in Teaching is to contribute to the improvement of teaching in
American schools. Given the urgency of the times, technological develop-
ments, and advances in knowledge from the behavioral sciences about teach-
ing and learning, the Center works on the assumption that a fundamental
reformulation of the future role of the teacher will take place. The
Center's mission is to specify as clearly, end on as empirical a basis as
possible, the direction of that reformulation, to help shape it, to fashion
and validate programs for training and retraining teachers in accordance
with it, and to develop and test materials and procedures for use in these
new training programs.

The Center is at work in three interrelated problem areas:
(a) Heuristic Teaching, which aims at promoting self-motivated and sus-
tained inquiry in students, emphasizes affective as well as cogml.tive
processes, and places a high premium upon the uniqueress of each pupil,
teacher, and learning situation; (b) The Environment for Teachin,&, which
aims at making schools more flexible so that pupils, teachers, and learn-
ing materials can be brought together in ways that take account of their
many differences; and (c) Teaching Students from Low-Income Areas, which
aims to determine whether more heuristically oriented teachers and more
open kinds of schools can and should be developed to improve the education
of those currently labled as the poor and the disadvantaged.

This paper grew out of the activities of the Center's Methodology
Unit and represents a methodological development generated in answer
to problems encountered in the reanalysis of the Rosenthal-Jacobson
Pygmalion in the Classroom study. Such data analyses problems pose
frequent difficulties in data gathered by Center projects.
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Abstract

This paper introduces a model for describing outliers in linear

regression which can be viewed as a mixture of a quadratic and a linear

regression. The maximum likelihood estimators of the parameters in the

model are derived and their asymptotic properties discussed. Small

sam?le behavior of the model and robustness to inaccurate specification

of the mixing parameter were investigated using Monte Carlo techniques.

The asymptotic properties provide reasonable indications of behavior for

n as small as 21 and the procedure appears quite robust to the in-

accurate specification of the mixing parameter. Building models to de-

scribe outliers and estimating their parameters provides an interesting

alternative to procedures of outlier detection followed by ordinary

least squares procedures.

xi



where

INTRODUCTION

The standard linear regression model for fixed x's is given by

yi = a + R(xi - T4) + ei i = 1, 2, ..., n (1)

Cov (e
i
e
j
) = 0 1 # j (2)

e n, N(0,13
2
) (3)

Occasionally the data may contain observations inconsistent with the

apparent pattern of the rest of the observation.-. Such aberrant

observations or outliers could lead in extreme cases to rejection of

(1) as the form of the regression relationship. Even if (1) is assumed,

estimators of a and 0 by standard least squares procedures based on

assumptions (2) and (3) may have unsatisfactory distributional properties

such as large bias snd large variance in the presence of outliers.

In this paper we formulate some models to describe outliers in

regression problems, give a brief review of previous work in this area,

and propose a particular model suggested by some real data. Then we

derive the maximum likelihood estimators of the parameters in the model

and their asymptotic properties. Monte Carlo investigations to determine

the small sample properties of the maximum likelihood estimators and

their robustness to inaccurate specification of the mixing parameter are

reported. Large sample and small sample comparisons under our quadratic
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outlier model of the maximum likelihood estimators and the ordinary

least squares estimators for linear regression are discussed. Finally

the model is applied to some data obtained in the Rosenthal-Jacobson

teacher expectancy study.

Some Models for Outliers in Linear Regression

We begin by outlining some simple models for outliers in linear

regression problems suggested by those propose in the single sample

case (see, e.g., Grubbs, 1969, or Dixon, 1962). Retaining assumptions

(1) and (2), alternatives to (3) which generate outliers are models with

skewed error distributions such as;

e N (1 - y)N(0,a2) + yN(A,a2) (4)

e N (1 - y)N(0,a2) + yN(X(x),a2) (5)

N (1 - y(x))8(0,0
2
) + y(x)N(X,0

2
) (6)

c N (1 Y(X))N(0,a2) Y(x)n(A(x).02) (7)

models like (4) or (5) in which it is known that

n-k of the c observations are N(0,0
2
) and that

k of the observations are N(A,a2) or N(A(x),02). (8)

With assumptions 1 and 2, error model (4) describes a process in which there

is a constant probability that a y observation will be biased by an

amount A . In model (5) the probability is constant but the amount of

bias depends on x . In model (6) the bias is constant but the probability
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of a biased observation depends on x . Model (7) is a combination of (5)

and (6).

We can propose analogous models with symmetric error distributions

for the scale contaminated case:

e 1, (1 - y)N(0,02) + yN(0,0a2)

e ft, (1 - y)N(0,02) + yN(0,A2(x)a2)

e q, (1 - y(x))N(0,a2)

e q, (1 - y(x))N(002)

+ y(x)N(0,
x202)

Y(x)N(0,A2a2)

models like (9) or (10) in which it is known that

n-k of the a observations are N(0,0
2
) and k

are N(0,X
2
a
2
) or N(0,X

2
(x)a

2
).

models like (9) where A
2
a
2

follows some distribution.

Model (9) describes a process in which occasional y observations come

from a population with a larger variance. In model (10) the variance of

aberrant y observations depends on x . In model (11) the probability

that a y observation has a larger variance depends on x . Model (12)

is a combination of (10) and (11).

These models with X(x) , y(x) suitably defined can describe a

wide variety of cases.
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Review of Literature

We define an outlier as an observation which is extreme in some

sense or violates the apparent pattern of the other observations. Most

of the statistical literature on outliers is concerned with two basic

problems: detection of cutliers and estimation of parameters in the

presence of outliers.

There are several approaches to the detection problem when we have

two variables. Let y and x derote the two variables and suppose at

first that both y and x are random variables. For bivariate and mul-

tivariace models where x or y are distributed as in (8) or (13) with

at most one outlier, a test statistic for outlier detection which maxi-

mizes the probability of making the correct decision has been discussed;

see Ferguson (1961b), Karlin and Truax (1960). When more than one outlier

is suspected there is little information on how to proceed. One technique

is to apply the method described above repeatedly. Another is to have

some prior information that particular observations are suspect and, then,

possibly apply tests developed by Wilks (1963) that generalize Grubbs

(1950). Still another alternative is to treat each variable separately

and apply univariate single sample techniques.

When x is the independent variable and is measured without error

and the regression of y on x is given by (1) where ei are distri-

buted as in one of models (4)-(14), a number of suggestions for locating

possible outliers have been made in the literature. One suggestion is

to compute the maximum squared studentized residual and reject the obser-

vation corresponding to this residual if it is significantly large.
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Clearly, this procedure has its difficuities; see Mickey et al. (1967).

Another suggestion made by Mickey et al. (1967) is to find the single

observation whose deletion causes the greatest reduction in the sum of

squared residuals. Having found and deleted this observation, the pro-

cedure finds the next observation whose deletion reduces the sum of squared

residuals as much as possible. No theory for the procedure is available.

The procedure can be carried out on the computer by using a standard step-

wise regression program such as BMDO2R. The regression relation must have

a known form (e.g., linear); but no distributional assumptions need to be

made for x and the distribution of y may follow any of the models

outlined above.

The problem of detecting outliers in the regression setup requires

much more work. Little theoretical guidance for consumers of statistical

regression analysis is available. A very interesting approach to outliers

in calibration analysis is suggested by Youden (see Barnett, 1965).

A review of how to estimate ce,0 and a measure of their variability

in the general case becomes a rather large problem. In our brief review

we will restrict consideration to the model defined by (1), (2) and some

choice of (4)-(13). So far the only work appears to be for symmetric

error models such as those in (9)-(13).

The main lines of attack on the problem of choosing estimators for

a,6 are essentially generalizations of the approaches to the single

sample problem. Anscombe's (1967) paper applies when the c are a

random sample from a t distribution or a distribution in some sense

well-approximated by a t (an example of model (14)). Anscombe indicates



6

that minimization of the Huber metric may be used and, generally, will

give estimates "close" to those obtained by his Bayesian approach using

the t as the basic data distribution. If the c
i

are distributed as a

scale contaminated compound normal distribution (model (9)), then the

methods of Box and Tiao (1968) may be extended to derive estimators for

a,0 . Anscombe's (1960a) paper is useful when we want to test for skew-

ness, kurtosis or heteroscedasticity. A few suggestions on estimation

procedures for a,8 based on ranks or signs have been investigated, see

Mood (1950), Adichie (1967a), Sen (1968), Theil (1950).

Estimators for a,a may also be deduced by first screening the

data for outliers by one of the techniques suggested in the section on

detection and then estimating a,(3 by minimizing some metric. Not much

is known about this approach except the paper by Anscombe and Barron

(1966) for estimating the population mean from a single sample.

AAUADRATIC OUTLIER MODEL

Our interest in the problem of outliers in linear regression

problems was kindled by two examples of data problems in which aberrant

observations seemed to occur only on one side of the regression line and

at one extreme of the x's (see Figures 5, 6, 7). Thus we were led to

consideration of error models (4)-(7). Model (5) seemed to describe

beat our impression that outliers were increasingly far from the line

for more extreme x and we were led to an examination of model (5) with a

reasonable specification of X(x) .

This paper, then, is concerned with estimation of the parameters in

the quadratic outlier model (15). Since the adoption of such a model

implies the occurrence of a similar pattern of outliers across several
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sets of data and the model may generate many nonextreme "aberrant"

observations, it seems more profitable to concentrate our efforts

directly on parameter estimation rather than on any two-stage detection

of outliers and parameter estimation procedures.

Quadratic outlier model:

yiea +8(xi -x) +Ei

Cov (e e1 = 0
j

e 1, (1 - y)N(0032) + yN(A(x),o2)

X(x) = c (x 0 2

m and y known

x's fixed

i = 1, 2, ..., n

1

(15)

We choose A(x) = c (xi - 0
2

with m known, as a simple function

which describes our impression of the data. We assume that tIte general

pattern of outliers, and thus m , is known. Model (15) describes a

bias which increases rapidly for extreme x . By defining m as xmin ,

x , xmax and forcing c to be positive or negative we can obtain the

bias patterns shown in Figure 1.

The assumption of known y is not so restrictive as might at first

appear. The literature indicates that its accurate estimation is

difficult and our own results indicate that incorrect specification is
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not serious. The problem of estimating the parameters of a mixture of

distributions has been around a long time. Pearson (1894) discussed

estimates based on the method of moments. Rao (1952) reviewed this

approach but pointed out that the estimate of the proportion of the mix-

ture has a large variance and its estimation requires very large samples.

Hill (1963), using scme expansions of the information for the

estimation of the mixing probability y for two exponential distribu-

tions, shows that unless the mixed distributions are very well separatd,

extremely large samples are needed even for moderate precision when all

other parameters are known. Larger samples are needed if the other

parameters must be estimated as well. Box and Tiao (1968) exploring

the estimation of 0 in the mixture (1 - y)N(0,a
2
) + yN(8,k

2
a
2
) by

Bayesian methods assuming k and y known and then using various values

of k and y showed that the estimator of 0 is not unduly sensitive

to changes in k or y in a reasonable range.

Figure 1: Bias patterns generated by model (15)
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Maximum Likelihood Estimators

Assuming m specified, y known, and the x's fixed, the maximum

likelihood eatimatora of a, $, c, a
2

are given by the following

equations:

where

& 7- Y--a E(x
i

- m)2 w
i

E(x
i
- 7)(Yi - i) 8 E(xi 1i)(xi m)2 wia-

2 2
E(xi - x) E(x

i
- x)

AZ E(Yi 11(xi '))2 /cL2 m)4
a

n n i

A
E(x - m)

2
(yi - a - soci -

;))
wi

c

E(xi - m)4 wi

(16)

(17)

(18)

(19)

1

2

A
(-2c(x

i
- m)

2
(y

i
- a - 0(x

i
x)) + c (x

i
m)

4
1

-1
w y 4- (1-y)e

2a
i (20)

A Fortran IV computer program to obtain iterative solutions to these

equations was written.

Asymptotic Properties of the Maximum Likelihood Estimators

Asymptotically the maximum likelihood estimators of a , 6 , c ,

2

have a multivariate normal distribution. That is, for fixed x's in the

interval (a, b) the estimators

61)4. -0 16- (an-0) . (6 -c) , T (°1241.-°2)
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have an asymptotic multivariate normal distribution with variance-

covariance matrix V given by n M
1 where M is the information

matrix. Letting AY= o
4
M , the terms in A are given by the following

formulas:

all 42 ma

2
y(1-y)c

2
E(xi-m)

4
Ii

812
y(1 -y)c

2
E(xim)

4
(xi-x)Ii

a13 - ya
2

E(xi-m)
2
+ y(1-y)cE(xi-m)

4
[Ji-c(xi-m)

2
Ii]

a14

y(1-y)
c
2

E(x -m)
4

(-J
i 2
+ (x -0

2
Ii)

ia2

822 - 0
2
E(x -x)

2
- y(1-y)c

2
E(x -m)

4
(x -x)

2
I
i

a23 - a2yE(x-7c)(xi-m)2 + y(1-y)cE(xi-70(xi-m)4(Ji-c(xi-m)2Ii]

y(1-y) 2

824
ft c E(x -x)(x -m)

4
(-J

i 2
+ (x

i
-,m)

2

i
)

a
2

a33 - yo2E(xi-04 - y(1-y)E(xi-m)
4
(K2c(xi-m)

2
Ji+c

2
(xi-m)

4
Ii)

3 c
834

c xi-m
Y(1-Y) E( )4 (K

I
- -32 -02

2

2Ji + (xi-m) Ii)
a
2

a
Y(1 -Y)

c
2
E(x -0 4 - c(x -s)

2
J + c

2

(x -041 )
0
444 2 t

where



and

2 2

1
-z

i
/2a

I - / e f (z
i
) dz

i
iiik.

-z
2
/2a

2

J
1

z, e i f (z ) dz

2, 2

K f
e f (z ) dz

2 -zi /2o

ffrra

f(zi) [(1-y)e

,2
,-c(xi-m,

[2zi - c(xi-m)
2,

2o
2

+ 1)-1

11

To demonstrate the way in which the asymptotic variances vary with

the parameters y, f and to gain an idea of variances we might expect

in small samples we evaluated the formulas for the asymptotic variances

A A A A2
of a, 8, c, a at several values of n (these numbers are then taken

from M
1

). As we shall see in later sections these asymptotic

formulas for the variances may provide very good approximations to the

actual variances for n's as small as 21.

Asymptotic formulas for the variances were computed for some

illustrative cases. We set a a 0.0 , B 1.0 , a - x , and c
min

positive. The x's -.rne equally spaced from -1.0 to +1.0 with one y

observation at each x . The asymptotic variances were evaluated for

sample sixes, n , of 15, 21, 41 and y of .10, .20, .30, .40. Values
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2

of o
2 were chosen so that = .50, .20; that is, values of 0

2
were

a
2

y

chosen to produce relationships between x and y accounting for 20%,

50% of the variation in y representing a range from fair to good fit

of the line. Values of c were chosen so that the mean of the 13rgest

possible residuals or f = c(x
max

- x
min

)
2

would take on values of 0 ,

a , 2a , 3a , 40 , 5a , 60 , 70 , So . The obtained variances for an ,

"ML '
and cn are given in Tables 1-3.

The asymptotic formula for the variance of an can be written as

0
2

times a function of y, f, n and the spacing of the x's; it does not

depend on a, 0, or A = xma
x
- x

min ,
the scaling of the x's. Therefore

in Table 1 in which x's were equally spaced for all calculations, we show

var az

2
as K(y, f, n) .

Examination of Table 1 shows that the asymptotic variance of an

decreases monotonically from a maximum 7.ue at c 0 but remains

relatively stable across a wide range of f values from 2a to 80 . The

A
variance of an increases with y and decreases with n .

0
2

The asymptotic variance of can n be written as times a
A
2

function of y, f, n and the spacing of the x's; it does not depend on

a or 0 . Table 2 shows that the change in the variance of lan with

f, y, n is very similar to that for variance an

02
The asymptotic variance of

8:14L
can be written as --- times a

A
function of y,f, n and the spacing of the x's. The asymptotic

variable of en decreases rapidly as f increases until about 4o or
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50 at which it begins to approach an asymptote. The variance of 2"
mL

decreases as n increases but it also decreases as y increases. For

larger y , the effective sample size for the estimation of c increases.

Table 1

Asymptotic Variance Formula for ess Evaluated for Equally Spaced x's

var

0
2

ye, .20 c(x
max

- x
min

)2

n 0 a 2a 3a 40 50 6a 70 8a

21 .8798 .0963 .0659 .0626 .0620 .0613 .0607 .0602 .0599

c(x
max

- x
min

)
2

60

y .10 .2C .30 .40

15 .0760 .0847 .0946 .1067

21 .0544 .0607 .0679 .0767

41 .0279 .0312 .0350 .0396
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Table 2

Asymptotic Variance of Rmi, for Equally Spaced x's

var

a
2

y = .20 c(x
max

- x )2
min

n 0 a 2a 3a 4a 5a 6a 7a 8a

21 1.912 .2346 .1738 .1684 .1623 .1552 .1505 .1479 .1466

c(x
max

- x
min

)2 = 6a

y .10 .20 .30 .40

n
15 .1886 .2024 .2194 .2414

21 .1402 .1505 .1631 .1795

41 .0754 .0809 .0878 .0966
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Table 3

A
Asymptotic Variance of cc for Equally Spaced x's

var en

a
2

y ic .20

n 0 a

c(x
ma

- x
min

)2

2a 3a 4a 5a 6a 7a 8a

21 11.14 .6545 .2249 .1490 .1204 .1055 .0974 .0931 .0907

c(x
max

- x
min

)2

y .10 .20 .30 .40

n
15 .2502 .1315 .0963 .0823

21 .1860 .0974 .0713 .0609

41 .1000 .0522 .0381 .0325
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SMALL SAMPLE PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATORS

We undertook a Monte Carlo study to investigate the properties of

the maximum likelihood estimators of a, R, c in small samples. We set

a = 0.0, 13 = 1.0 and m =
min

throughout. Eight parameter sets

specifying the values of n, yT, 0
2

, c and the spacing of the x's were

defined and used to generate y samples, see Table 4. For each parameter

set, evaluation cf the properties of the estimators were made for several

choices of yE , the value of y actually used in estimation. The basic

parameter set involved 21 equally spaced x's from 1 to 21, yT = .20 ,

,
- x

min
)
2

= 6a . We chose 0
2

= 36 to obtain a02 = 36 , and c(x
max

representative situation in which x predicts 50% of the variance in y .

The values f = 60 and yT = .20 were chosen because unless outliers are

occasionally obvious by inspection it is unlikely that an outlier model

would be applied (this is also approximately the value observed in the

RJ data). Tne variations from this basic set of parameters include cases

in which a
2

is reduced, c is reduced, n is reduced, the X13 follow

a normal distribution, n is increased, and yT is varied.

For each Tarameter set and choice of yE , 200 random samples of y

observations were generated using a random normal generator developed for

the IBM 360 by Chen (1969). For some parameters, several sets of 200

samples were generatei. The maximum likelihood estimators were obtained

for each sample and the observed means and variances of the estimators

across the 200 samples were calculated.
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Table 4

Parameter Sets

a = 0.0 5= 1.0 m = x
min

'
02

c(x
max

-x
min ) 2

n y x s y
E

17

No. of samples

YE

.01 .05 .10 .20 .30 .40

1. Basic 21 .20 equally 36 60 .09 200 200 600 200 200
spaced
1 to A_

2. Reduce 0
2

21 .20 equally 9 6a .045 200 200 400 200 200
spaced
1 to 21

3. Reduce c 21 .20 equally 36 3a .045 200 200 200 200 200
spaced
1 to 21

4. Reduce n 15 .20 equally 18.67 6a .1322 200 200 400 200 200
spaced
1 to 15

5. Val, x's 15 .20 expected .85 60 .45 200 200 400 200 200
normal
order
statis-
tics

6. Increase n 41 .20 equally 140 60 .04437 200 200 400 200 200
spaced
1 to 41

7. Reduce y 21 .05 equally 36 60 .09 200 200 200 20C
spaced
1 to 21

8. Increase y 21 .40 equally 36 60 .09 200 200 200 200

spaced
1 to 21
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The initial estimates used in the iterative maximum likelitmd

solutions were a
LS '

A
LS '

ou,and c was estimated from the largest

residual from the least squares line in the appropriate quadrant. In

general the iterative solution converged to six significant digits in each

eetimator fairly rapidly. The procedure was automatically terminated

after 100 iterations. Table 5 shows the number of iterations required

for convergence for the basic parameter set with yE = yT = .20 and with

yE = .40 , yE = .05 . The median number of iterations was in the range

20-29. The number of iterations required seems to increase somewhat as

yE increases.

A
Tables 6, 7, and 8 show the results for an , 014L , and cm,

respectively. Part (a) of each table shows the ratio of the asymptotic

variance to o
2

for each parameter set for several y values. (Note

that this ratio is independent ^f o2). These figures have been scaled

to allow comparisons with figures in Tables 1, 2, and 3 (i.e., they all corre-

spond to calculations made for x ranging from -1 to +1.). Part (b) of

each table shows the ratio of the observed variance using yE to the

asymptotic variance calculated with yE . Part (c) of each table shows

the ratio of the observed variance using yE to the asymptotic variance

calculated with yT . Part (d) of each table shows the observed bias

(due to scale changes these figures are not necessarily comparable from

row to row). Part (e) shows the ratio of the squared bias to the

asymptotic variance calculated with yT .

A guideline to the interpretation of the ratios between observed

and asymptotic variances can be obtained by the following argument. If

an estimator 6 is normally distributed, the standard deviation of its

estimated variance based on p samples is ,i7F var 0 . Thus the
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Table 5

Number of Iterations Required for Convergence to Six

Significant Digits in All Estimators for Basic Parameter Set

= .20
YT

No. of
Iterations

YE = .20.

Frequency

=YE .40

Frequency

YE = .05

Frequency

1 - 9 1 0 2

10 - 19 63 25 94

20 - 29 82 69 53

30 - 39 27 33 21

40 - 49 7 22 14

50 - 59 5 13 9

60 - 69 2 7 1

70 - 79 4 8 1

80 - 89 0 3 4

90 - 99 2 4 0

100+ 7 16 1

200 200 200
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/^.

6
standard deviation of

var
--A- is approximately . So for p u 200
var

we would expect the observed variances to be within +20% of the true

variance; for p = 400 and p = 600 , the observed variances should be

within +14% or +12% respectively.

Behavior when yE = yT

The properties of an are shown in Table 6. Note that the

asymptotic variance of am, is not strongly affected by c, y, or the

spacing of the x's. For the parameter sets investigated here the actual

variance is only 14% to 35% larger than the asymptotic variance when

yE = yT . The bias is generally positive but contributes less than 1%

to the MSE

The asymptotic variance of depends more heavily on c and the

spacing of the x's than does the variance of a . With the exception

of two cases the observed variance is no more than 15% larger than the

asymptotic variance. The bias is numerically quite small and makes a

negligible contribution to MSE.

The asymptotic variance of 8141, is fairly strongly affected by

changes in the parameters, especially by changes in y . The observed

variance is considerably larger than the asymptotic variance--about 2 to

6 times larger for these cases. The bias is generally negative

indicating that c is underestimated on the average. The contribution

of bias to MSE ranges from 4 to 22% except for the case where yT = .05 .

A A A
How nearly normal are the distributions of a, 0, c in small samples?

Histograms of the distributions of am, kiL' 8141, for the 600 samples

generated by basic parameter set with y - .20 n = 21 are shown in
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Table 6

Properties of an

a) Ratio of asymptotic variance of an to a
2

Parameter set y

No. n YT .01 .05 .10 .20 .30 .40

1 21 .2 .0485 .0513 .0544 .0607 .0679 .0767
2 21 .2 .0485 .0513 .0544 .0607 .0679 .0767
3 21 .2 .0486 .0515 .0550 .0626 .0716 .0828
4 15 .2 .0679 .0717 .0760 .0847 .0946 .1067

5 15 .2 .0681 .0726 .0777 .0882 .0998 .1137

6 41 .2 .0248 .0163 .0279 .0312 .0350 .0396
7 21 .05 .0485 .0513 .0544 .0607 .0679 .0767

8 21 .4 .0485 .0513 .0544 .0607 .0679 .0767

b) Ratio of observed variance using YE to asymptotic variance with yE

Parameter set
YE

No. n YT .01 .05 .10 .20 .30 .40

1 21 .2 1.37 1.62 1.21 1.06 1.07

2 21 .2 2.02 1.38 1.14 1.24 .93

3 21 .2 1.08 1.41 1.27 1.28 .95

4 15 .2 1.46 1.66 1.34 1.08 1.29

5 15 .2 1.66 1.56 1.17 1.14 1.06
6 41 .2 1.63 1.06 1.18 .92 1.18

7 21 .05 1.12 1.19 1.03 .89

8 21 .4 3.86 2.07 1.38 1.31

c) Ratio of observed variance using yE in estimation to asymptotic
variance with yT

Parameter set YE

No. n YT .01 .05 .10 .20 .30 .40

1 21 .2 1.16 1.45 1.21 1.19 1.35

2 21 .2 1.72 1.23 1.14 1.39 1.17

3 21 .2 .89 1.24 1.27 1.47 1.24

4 15 .2 1.23 1.49 1.34 1.21 1.63
5 15 .2 1.37 1.38 1.17 1.29 1.37

6 41 .2 1.37 .95 1.18 1.03 1.52

7 21 .05 1.05 1.19 1.09 1.06
8 21 .40 2.73 1.64 1.22 1.31
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Table 6 (Continued)

Properties of al

d) Bias in ats when YE is used in estimation

Parameter set

No. n YT .01 .05 .10

YE

.20 .30 .40

1

2

3

4

5

6

7

8

21

21
21
15

15

41

21

21

.20

.20

.20

.20

.20

.20

.05

.40

.024

.548

.477

.749

.493

.117

1.354
-.047

.532

.268

.200

.365

.099

.691

.012
2.111

.066

.021

.135

.033

.007

.072

-.338
.931

-.281
-.166
-.415
-.330
-.044
-.595

.315

-.540
-.157
-.625
-.212
-.103
-.947

.056

e) Squared bias in am,

YT

Parameter set

No. n YT .01

as a percent of the asymptotic variance using

YE

.05 .10 .20 .30 .40

1

2

3

4

5

6

7

8

21

21

21
15

15

41

21

21

.2

.2

.2

.2

.2

.2

.05

.40
0

14

50
25

16

18

42

0

13
13

2

8

14

11

0

162

0

0

1

0

0

0

6

31

4

5

8

6

3

3

4

14

5

17

3

14

21

1
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Table 7

Properties of
AML

a) Ratio of asymptotic variance of 13;//, to a
2

Parameter set

No. n 1T .01 .05 .10 .20 .30 .40

1 21 .2 .1314 .1354 .1402 .1505 .1631 .1795
2 21 .2 .1314 .1354 .1402 .1505 .1631 .1795

3 21 .2 .1327 .1409 .1500 .1684 .1893 .2148
4 15 .2 .1770 .1823 .1886 .2024 .2194 .2414
5 15 .2 .2389 .2468 .2559 .2752 .2983 .3276

6 41 .2 .0705 .0728 .0754 .0809 .0878 .0966

7 21 .05 .1314 .1354 .1402 .1505 .1631 .1795
8 21 .4 .1314 .1354 .1402 .1505 .1631 .1795

b) Ratio of observed variance of
using yE

Parameter set

No. n YT .01 .05 .10

using yE

.20

to asymptotic variance

.30 .41)

1

2

3

4

5

6

7

8

21
21
21
15

15

41
21
21

.2

.2

.2

.2

.2

.2

.05

.4

1.14

1.60
2.34
1.24
2.04
1.95
1.36

1.15

1.34
1.52
1.36
1.88
1.56
1.37
.89

4.52

.97

1.05
1.10
1.49
1.14

1.09
1.16
1.88

1.11
1.31
1.30
1.11
1.18
.81

1.45

1.20
.88

.89

1.17
1.34

.87

1.43

c) Ratio of observed variance when
variance using yT

Parameter set

No. n YT .01 .05

yE

.10

used in estimation to asymptotic

YE

.20 .30 .40

1

2

3

4

5

6

7

8

21

21

21
15
15

41
21

21

.2

.2

.2

.2

.2

.2

.05

.4

1.10

1.44
2.12

1.02
1.83
1.76
1.22

1.15

1.25
1.42
1.21
1.74

1.45
1.28
.92

3.50

.97

1.05
1.10
1.49
1.14
1.09
1.28
1.56

1.21
1.43
1.47
1,20
1.27

.88

1.31

1.43
1.05
1.14
1.39
1.59
1.04

1.43
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d) Bias in

Table 7 (Continued)

Properties of ra..

HrIL

when
YE

used in estimation

Parameter set

No. n YT .01

YE

.05 .10 .20 .30 .40

1

2

3

4

5

6

7

8

21

21

21
15

15

41
21
21

.20

.20

.20

.20

.20

.20

.05

.40
.0009

.0445

.0444

.0608

.0434

.0507

.0226

.0236

.0151

.0160

.0348

.0631

.0187

.0308
-.0266
.2201

-.0007
.0075

.0335

.0332

.0038

-.0035
-,0027
.0716

.0095

.0108

-.0540
-.0189
-.0091
-.0061

.0283

-.0363
.0125

.0560
-.0473
-.0414
-.0171

.0186

e) Squared bias in

Parameter set

No. n T .01

as a percent of the asymptotic variance using

YE

.05 .10 .20 .30 .40

1

2

3

4

5

6

7

8

21

21

21

15

15

41
21

21

.2

.2

.2

.2

.2

.2

.05

.4

0

4

15

5

3

4

2

1

0

2

2

6

0

3

1

74

0

1

2

2

0

0

0

8

0

1

5

0

0

0

2

0

0

3

3

2

1

1

TT



Table 8

Properties of

a) Ratio of asymptotic variance of

Parameter set

c to a2

No. n YT .01 .05 .10 .20 .30 .40

1 21 .2 2.0367 .3754 .1860 .0974 .0713 .0609

2 21 .2 2.0367 .3754 .1860 .0974 .0713 .0609

3 21 .2 4.0500 .6515 .3046 .1490 .1040 .0859

4 15 .2 2.7203 .5037 .2502 .1315 .0963 .0823

5 15 .2 3.6619 .6705 .3309 .1721 .1252 .1065

6 41 .2 1.1051 .2024 .1000 .0522 .0381 .0325

7 21 .05 2.0367 .3754 .1860 .0974 .0713 .0609

8 21 .4 2.0367 .3754 .1860 .0974 .0713 .0609

b) Ratio of observed variance using YE

Parameter set

to asymptotic variance using

No. n YT .01 .05 .10 .20 .30 .40

1

2

3

4

5

6

7

8

21

21

21

15

15

41

21
21

.2

.2

.2

.2

.2

.2

.05

.4

.55

1.07
1.29
.55

1.46
1.29

.99

2.77

2.90
2.46
1.04
1.89
2.36
1.50
6.12
1.24

4.47
5.25
1.95
6.10
3.78
2.97

9.90
1.19

5.30
6.49
6.07
5.30
5.C9
5.95

1.37

8.55
6.72
2.74
7.58
4.80
8.41

3.32

25

Y113

c) Ratio of observed variance k.hen
variance using YT

Parameter set

No. n YT .01 .05

YE

.10

used in estimation to asymptotic

.20 .30 .40

1

2

3

4

5

6

7

8

21

21

21

15

15

41
21

21

.2

.2

.2

.2

.2

.2

.05

.4

3.00

4.50
4.97
2.41
5.57
5.04
3.84
2.77

5.51
4.69
2.31
3.61
4.54
2.87

3.03
3.79

4.47
5.25
1.:5
6.10
3.78
2.97

2.56

1.90

3.86
4.74
4.24
3.88
3.70
4.35

1.60

5.33
4.20
1.58
4.74
2.97

5.24

3.32
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TabLe 8 (Continued)

Properties of 211/,

d) Sias in an when
YE

used in estimation

Parameter set

No. n YT .01

YE

.05 .10 .20 .30 .40

1

2

3

4

5

6

7

8

21

21

21
15
15

41
21

21

.20

.20

.20

.20

.20

.20

.05

.40

.0347

-.0071
-.0925
-.0072
-.0121
-.0525
-.0017
-.0364

-.0131
-.0026
-.0018
-.0217
-.0493
.0015

-.0363
-.0072

-.0087
-.0028
-.0071
-.0138
-.0570
-.0018
-.0339
-.0021

-.0116
-.0081
.0050

-.0158
-.0397
-.0042

-.0003

-.0149
-.0087
-.0082
-.0295
-.0832
-.0067

-.0032

e) Squared bias in an

Parameter set

No. n YT .01

as a percent of the asymptotic variance using

YE

.05 .10 .20 .30 .40

1

2

3

4

5

6

7

8

21

21

21
15

15
41
21
21

.2

.2

.2

.2

.2

.2

.05

.4

88

14

7

10
15

17

6

98

49

8

1

46

15

5

98
24

22

9

9

19

20

7

75

2

38

75

4

24

10

39

0

63

87

13

86

43

99

4

YT
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Figures 2-4. These distributions appear reasonably symmetric and

well-behaved, especially the distribution of RmE . Note the second

peak at zero in the distribution of c .

In summary then, for y known, o appear to behave

well for samples as small as 21. The bias is not large and the asymp-

totic variance formula if inflated by 20 to 50% could reasonably be used

to provide some estimates of precision. The estimator of c performs

poorly by contrast, it is an underestimate on the average and much more

variable than asymptotic results would indicate. This is hardly

surprising since the effective sample size for the estimation of c is

of the order of
2

Robustness to Inaccurate Specification of y

rML '

A
Now that we have assessed the small sample behavior of am

and an whrm the true y is known we need to evaluate how misled we

will be if the wrong value of y is used in the estimation procedure.

For each parameter set we have run sets of 200 samples when the value of

y used in the estimation procedure, yE , is not equal co the true y

value, yT . Changes in the observed variance and observed bias due to

inaccurate specification of y are shown in Tables 6, 7, 8.

For Ells we note that inaccurate specification of y does not

seem to have an appreciable effect on the size of the variance. Table 7f

shows that the ratio of the observed to the asymptotic variance using yE

was generally less than 1.7. The bias in a much more directly

affected by yE ; it is quite close to zero when yE yT , becoming

moderate and positive for yE < yT (y underestimated), and moderate and

negative for yE > yT (y overestimated). That is, underestimation of
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y leads to overestimation of a and overestimation of y leads to

underestimation of a . Although using a y of .05 or .40 when the

true value is .20 is quite a large error, the bias at these extremes

generally contributes only about 20% to the MSE.

The situation for an is very similar although inaccurate

specification of y seems to have a somewhat larger effect on the

variance. Again, the bias tends to switch from positive to negative as

we go from underestimation to overestimation of y; however, the bias

is generally of negligible size even at the extremes.

For ,P inaccurate specification of y does not exhibit any
"ML

appreciable tendency to inflate the variance. The observed variance is

much more strongly influenced by the value of yT than by yE , tending

to be comparatively stable across a row. The effect on the size of the

consistently negative bias is variable, with overestimation of y

considerably worse than underestimation.

In summary then, even for relatively small samples the maximum

likelihood estimators of a, 0, c are robust to inaccurate specification

of y Their variances are only moderately affected by differences

between yE and yT , and bias becomes a serious problem only for en

when y is overestimated.
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COMPARISON OF MAXIMUM LIKELIHOOD ESTIMATORS AND ORDINARY IEAST
SQUARES ESTIMATORS OF a, B

How much can we generally expect to gain by using the maximum

likelihood estimators of a, ;I rather than the ordinary least squares

estimators whose computation ignores the presence of outliers. The

ordinary least squares estimators are given by

als = y

£ (xi. - 7-c) (yi - i)A
il
ls

=
E(x

i
- x)

2

_
E(Y i - -Y-- 0ls (xi x))

2

o
ls

=
n-2

To derive the expected values and variances of these estimators under

the quadratic outlier model we note that

E(yi) = a + fi(xi - ;7) + yc (xi - 02

and

Var 02 _y)c2
-

m)4

Thus under the outlier model

E(4318) - a + 1--ce E(xi - 02

2
1 c

iii

c2 Y(12y) _%4
Var (61

Is'
n
2 `'`i mi
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E(x, - X)(x4 - m)
2

E ( $ 22
E(xi - x)

2
T)2

-
04

Var 618) = a + c2 y(1 y)
2 2 2

E(x -x) [ E(x - x) ]

2 2 2
tp.1. 4 22 _,_ r,

- 1E____ [(1--m)4-m` + y[E(xi-m) ] ]-'asi a m n-2 "xi-nil n(n-2) " Y1 i 1

2 2
yc

2
L(1-y)E(x -x)

2
(x -m)

4
+ y[E(x -27)(x -m)

2
] ]

E(x -x) (n-2)

The estimators of a and $ are inflated by terms in ye and the x's,

their variances are increased by terms in c
2
y(1-y) and the x's.

The maximum improvement obtainable from using the maximum likelihood

MSE
ls

USE
ls

estimators can be assessed by looking at and where the
MSE ten

A

MSE /8ML

asymptotic formulas for the ML estimators are used. (Since an ,
ML

are asymptotically unbiased, MSE - var .) Calculations for a - 0 ,

a . 1 , equally spaced x's between -1.0 and +1.0 , m - -1.0 , are

displayed for several values of y , n , c in Table 9. Improvement from

using the ML estimators is rapid with increases in y , c , in . For in - 21 ,

y - .2 , f = 6a , the mean squared error using the least squares estimators

is almost five tines that using the maximum likelihood estimators.

Do ratios of mean squared errors observed in the Monte Carlo study

are shown in Tables 10 and 11. Although the observed advantage of the

maximum likelihood estimators of a and 8 is less than indicated
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a) Asymptotic formulas for

y = .20

Table 9

MSE (641,S)

MSE (an)

c(xmax - xmim)2

0 a 2a 3a 4a 50 6a

n = 21 .06 .5t 1.11 1.67

c(xmax - xmin)2 = 6a

Y .1 .2

2.39 3.34 4.52

n

21 2.26 4.52

41 2.90 6.97

MSE (BLS)
b) Asymptotic formulas for

MSE (1,,m)

y = .20

c(xmax - xmin)2

0 a 2a 3a 4a 5a ba

n = 21 .07 .62 1.14 1.63

c(x
max

- x
min

)2 = 641

y .1 .2

2.47 3.59 4.96

n

21 2.57 4.96

41 3.08 6.95



Table 10

Parameter set

No. n YT .01

Observed

.05

MSE BLS

.30 .40

MSE am

YE

.10 .20

1

2

3

4

5

6

7

8

21

21

21
15

15
41
21
21

.2

.2

.2

.2

.2

.2

.05

.4

1.24

3.09
2.34
1.39
2.47
1.87

3.52
1.22

3.34
3.68
1.37
2.52
2.24
6.78
1.44
2.68

3.90
4.01
1.36
3.05
2.48
8.31
1.20
5.67

3.45
2.70
1.08
2.64
2.61
6.06

8.72

2.67

3.96
1.04
2.30
2.23
4.01

7.95

Table 11

Parameter set

No. n YT .01

Observed

.05

MSE BLS

.20 .30 .40

MSE BML

YE

.10

1

2

3

4

5

6

7

8

21
21
21
15

15

41
21
21

.2

.2

.2

.2

.2

.2

.05

.4

1.38

3.02
2.55
1.28
2.37
2.20
4.36
1.61

4.09
3.87
1.36

2.77
2.35
5.92
1.28
2.86

4.78
4.76
1.68
3.44
2.92
6.33
1.48
6.77

4.28
3.47
1.12
3.53
2.69
8.06

8.81

3.36
4.94
1.39

2.77
2.74
6.28

7.46

35
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by asymptotic results, it is still considerable. The MSE usinr standard

least squares is at least 2.4 that using the maximum likelihood estima-

tors with the true y for all but the cases with f = 3o and y = .05 .

The maximum likelihood estimators still perform better than the least

squares estimators even when the estimated y Is way off. The advantage

of the maximum likelihood estimators increases rapidly with small

increases in sample size.

Comparisons were also made between the maximum likelihood

estimators and the ordinary least squares estimators for a quadratic

regression. However, for x's symmetric about 7: , the two least squares

estimators are identical and MSE & was little different in the two

situations.
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APPLICATIONS

I became interested in the problem of outliers in regression when I

undertook with Professor Richard Snow at Stanford a reanalysis of the

data reported on by Rosenthal and Jacobson in their book Pygmalion in

the Classroom. All the children in a particular grade school were given

a preliminary I.Q. test. Then, one-fifth of the children were selected at

random and their teachers told that these experimental children were

expacted to bloom intellectually very soon. Months later all the

children, both experimental and control groups, were retested witt the

same IQ test. One way to assess differences between the two groups is

to compare the regression of posttest IQ on pretest IQ. However, we soon

found that although a straight line seemed to describe the majority of

children fairly well, some children had excessively high IQ's on the

retest.

Look at Figure 5 which shows pre and post Total IQ scores for the 19

experimental group children in the first and second grades. One child with

a pretest IQ score of 139 has a posttest IQ score of 202. Figure 6 shows

the Verbal IQ results for the third- and fourth-grade experimental group.

Figure 7 shows the Verbal IQ results for the fifth- and sixth-grade experi-

mental group. Other similar patterns appear fop: other groups in the experi-

ment; except for the first- and second-grade Reasoning subtext, which has

some excessively low pretest scores, the general picture is the same for

Verbal and Reasoning subtexts for all grades. Most of the points seem to

lie on a straight line, but some children with high pretest emotes have

excessively high posttest scores. Thus we have a problem where outliers

seem to occur only for high values of x .
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Figure 5: Pre and Post Total IQ scores for 19 experimental group children

in grades 1 b 2 (Note that both scales start at 50.)
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Figure 6: Pre and Poat Verbal IQ scores for 26 experimental group children

in grades 3 fs 4 (Note that both scales start at 50.)
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Figure 7: Pre and Post Verbal IQ scores for 23 experimental group children

in grades 5 & 6 (Note that both scales start at 50.)
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In this problem the apparent outliers may be partially due to the IQ

transformation of the raw scores. At the extremes of the score distribu-

tion, one question right or wrong can make many points difference in IQ.

However, the raw scores were no longer available to us, and it is the IQ

scores which generally receive the psychological interpretation.

We then applied our outlier model to the estimation of a and 0

for three sets of data from the Rosenthal experiments. Tables 12, 13,

and 14 show the results for grades 1 and 2, grades 3 and 4, and grades

5 and 6, the data shown in the scatterplots. The iterative solutions of

the maximum likelihood equations converged to at least six significant

digits after 20-25 iterations.

Look first at Table 12. When standard least squares was used we

obtained 6. = 117 , 0 .2 .93 and s
2

= 376. When the one "obvious

outlier" was removed a = 112 , = .58 and s
2

= 159 using standard

least squares. The maximum likelihood estimates obtained with y = .05

are a = 113 , 0 = .58 , s2 = 141 , c = .0126 . Notice that these

estimates change very little for values of y ranging from .01 to .20,

and how similar they are to those obtained by deleting the outlier and

using standard least squares. The estimate of '8 is very close to that

obtained by fitting the bias term through the outlier point. We also

tried y = .001 and obtained & = 116.4 , = .90 , s2 = 339 -- very

similar to standard least squares on all the data.

For grades 3 and 4 the data resemble the grades 1 and 2 data with

one outlier, but there are two y points near the line for very large

x; that is, the basic line appears better defined, and the outlier is

farther out. Here even for y = .001 the results were very little
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affected by choice of y and resembled those for standard least squares

with the outlier deleted.

Our results for grades 5 and 6 were very similar. The choice of

y had little effect on the estimates of a, 0, c for y = .01 to

.30; s
2

was most affected. For y = .001 results were close to the

standard least squares on all the data. These data do not look like a

one-outlier problem and the results obtained using our method do not

resemble those obtained by deleting one outlier. These data look much

more like our second interpretation--a mixture of linear and quadratic

regression.

Our estimates of c were similar for all three pieces of data:

.0126, .0112, and .0102.

In conclusion the model seems general enough to represent many

outlier problems. Choice of y in any reasonable range seems to make

little difference in the estimates. The data seem to dominate the

specification of y . Use of this model has reflected well our intui-

tive impressions of the data.

In general it seems desirable to fit a model which describes all

the data well--outliers and all--and regression problems with outliers

dependent on the x value could use considerable investigation.
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Table 12

Regression Analyses for Grades 1 & 2

Experimental Group Total IQ 1 & 3, N = 19

Standard Least Squares

yx

All Data 116.7 .93 19.39

Outlier reduced
from 202 to 160

114.5 .71 13.48

Outlier deleted 112.0 .58 12.63

Maximum Likelihood Estimates Under Outlier Model (m = 60)

y & s2 2

.001 116.4 .8997 338.96 .0098

.01 113.13 .5771 141.59 .0127

.05 112.92 .5785 141.49 .0126

.10 112.65 .5796 142.13 .0124

.20 111.97 .5782 146.13 .0120

Outlier
deleted

y - .05 111.82 .5698 150.01 .0024

Solutions converged to 6 significant figures after about 20 iterations.
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Table 13

Regression Analyses for Grades 3 & 4

Experimental Group Verbal IQ 1 & 3, N 26

Standard Least Squares

All Data

1 Outlier deleted

61 A s x

115.65 1.07 26.92

109.60 .70 13.85

Maximum Likelihood Estimates Under Outlier Model (m s 60)

a S 8
2

.001 11

.01 110.97 .7052 191.52 .0113

.05 110.70 .7123 191.48 .0112

.10 110.35 .7214 191.66 .0112

.20 109.59 .7405 192.92 .0110

1 Outlier
deleted

.05 101.41 .6768' 10.93
. -

.0022
IP 411 dr



Table 14

Regression Analyses for Grades 5 & 6

Experimental Group Verbal IQ 1 & 3, N = 23

Standard Least Squares

All Data

1 Outlier deleted

a B s s2
y.x

115.35 1.14 20.8 432.6

110.73 .98 15.9 252.8

Maximum Likelihood Estimates Under Outlier Model (m = 60)

Y & fl s

.001 115.24 1.137 408.7

.01 108.65 .8455 97.40

.05 108.27 .8444 93.07

.10 107.83 .8433 88.14

.20 106.99 .84 81.14

.30 106.31 .8405 76.13

.60 105.0 .8468 71.66

.70 104.6
. .

.8503
.

71.95

.80 104.3 .8544 73.25

1.0 114.4 1.136 414

1 Outlier
deleted

.05 107.72 i .8459 95.64

e

.007

.0102

.0102

.0103

.0103

.0104

.0105

.0105

.0105

.0112

45



46

CONCLUSIONS

We have proposed a model describing outliers in a linear regression

problem, derived the maximum likelihood estimators of the parameters,

and examined the asymptotic properties of the estimators. We have

examined the behavior of the estimators in small samples and their

robustness to inaccurate specification of y . We have applied the

model to some real data.

Although this particular quadratic outlier model was suggested by

some real data and seems to be useful in the analysis of that data, the

importance of the pacer does not lie in this particular model but in

the demonstration that models of this kind can be useful, that the

asymptotic properties provide not unreasonable indications of behavior

for samples as small as 21, and that the procedure may be quite robust

to inaccurate specification of y Thus, building models to describe

outliers and estimating the parameters of these models provides an

interesting alternative to procedures of outlier detection followed by

ordinary least squares procedures.
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